

An integrated approach for river water quality monitoring in a large scale gold mining watershed

Daniel Mercado-Garcia, Eveline Beeckman, Jana Van Butsel, Nilton Deza Arroyo, Marco Sanchez Peña, Cécile Van Buggendhoudt, Nancy De Saeyer, Marie Anne Eurie Forio, Karel De Schamphelaere, Guido Wyseure and Peter Goethals

IS IT REALISTIC TO STOP MINING?

- High economic and technological importance
- Optimistic recycling rate = maximum 50%
- Rich ore deposits in fragile ecosystems
- Continuous social reluctance

Water resources = a major problem

Fuente: Min. De Energía y Minas

(Garcia Parra, 2013)

IS IT REALISTIC TO STOP MINING?

MINING IN COMBINATION WITH GLOBAL CHANGE

Poopó lake in Bolivia (Terrazas, J., 2017), dried out due to combined urban growth, climate change, El Niño and water demand → High complexity

WATER QUALITY

MONITORING OF A

LARGE-SCALE GOLD

MINING WATERSHED

(CAJAMARCA, PERU)

14 sites near the mine

14 sites at midstream

4 sites in **Porcón** tributary

8 sites in the city

= **40 sites total** assessed for:

Dissolved metals, organic
pollutants and benthic
macroinvertebrates. Landuse and
hydromorphology

(Mercado-Garcia et al., 2019)
Published in Water journal:

https://www.mdpi.com/2073-4441/11/9/1797

PHYSICOCHEMICAL MEASUREMENTS

Sampling locations, from upstream to downstream

White background= rural and peri-urban areas

Grey background= Cajamarca City

BIOASSESSMENT MIDSTREAM

Best quality and biodiversity, despite agricultural pollutants

→ good physical habitat structure (hydromorphology)

BIOASSESSMENT URBAN AREAS

Worst quality and biodiversity, degraded hydromorphology, severe pollution and nauseous smells

LESSONS FROM OUR ASSESSMENT

- Hallmark <u>mining impacts are absent</u> according to the selected freshwater quality indicators (conceived in different contexts)
- Acid- and metal-<u>tolerant 'good-quality' bioindicators</u> were present, and other potential ones (e.g., Acari, Grypopterygidae, ecotoxicological or microbial enzymatic activity) are <u>uncharacterized</u>
- A quantitative determination of freshwater quality might be a weak
 assessment endpoint due to the <u>high complexity</u> of open-pit mining

IDENTIFYING KEY ACTORS AND DECISION MAKERS (\$)

CONCLUSIONS

1. More importance of ecological losses over data-driven quality thresholds is needed, since mining operations causes complex changes in the overall system.

2. A system-based understanding is urgently needed for integrating governments, scientific disciplines and mining businesses in the protection of aquatic habitats and non-mining stakeholders in the long run.

IWA-IDB INNOVATION CONFERENCE ON SUSTAINABLE USE OF WATER: Cities, Industry and Agriculture

Daniel Mercado-García

PhD student

LABORATORY OF ENVIRONMENTAL TOXICOLOGY AND AQUATIC ECOLOGY, RESEARCH GROUP AQUATIC ECOLOGY

E daniel.mercadogarcia@ugent.be

T +32 9 264 38 95

M +32 492 95 80 53

researchgate.net/profile/Daniel_Mercado-Garcia

• orcid.org/0000-0001-9090-3948

in • linkedin.com/in/dmercadogar/

www.ugent.be

