

Bioelectrochemical peroxide production for water disinfection

Case study for regenerative water services

Content

1. Introduction

• Substantial inequalities for provision of sanitary services between urban (reaching full coverage) and rural areas (\sim 25% coverage) in Latin America (WHO, 2017).

Guayaquil-Ecuador, 2017

Babahoyo-Ecuador, 2017

Areas with water stress: supply shortage and poor waste treatment on areas of dispersed population

- 33% of households have access to water through a network.
- 10% counts with sewage system (Cuesta, et al 2017).
- Larger distances hinder the coverage of water services.
- Waterborne diseases by water supplied from polluted water

bodies (MSP, 2014).

Tsáchilas-Ecuador, 2017

Capital: Quito
Language: Spanish
Total Surface: 283561 km²
Population: 16 628 217

Dispersed population: 3 715 343 Density: 15 hab/km2

Solution for waste water treatment and water supply: Water reuse

2. Definition of the project

Decentralized waste water treatment systems: Constructed wetlands

- ✓ Filtration, degradation, and stabilization.
- ✓ Optimal for (sub)tropical countries.
- ✓ Capital and maintenance cost are reduced.
- ✓ Long-term solution/health protection/ Promote job opportunities and local services.
- Removal of pathogens is not guaranteed.

Household level

Community level

Enhanced disinfection by (bio)electrochemical systems

$$O_2 + 2\bar{e} + 2H^+ \rightarrow H_2O_2$$

Pros:

- Organic degradation + clean energy input.
- *In-situ* production of disinfectants without external reagents.
- Avoid transportation and storage.

Why disinfection with peroxide?

- Degrades to non harmful products.
- Production of strong oxidant reagents (OH°, HO₂-) at alkaline pH, Uv-light, and/or Fenton reactions.
- Cheap carbon electrodes.

Peroxide disinfection towards water reuse

Compliance:

- 3 log removal for discharge to water bodies.
- < 1 log CFU mL⁻¹ for agricultural use.
- Reuse?

(Tulsma, Ecuador 2003)

Plate counts 0.1% total bacteria: ——, 0.1% coliforms: — —, 0.01% total bacteri ——, 0.01% coliforms: — —. Error bars indicate 95% confidence interval (Arends et al, 2014)

Peroxide production in (bio)electrochemical cells

$$O_2 + 2\bar{e} + 2H^+ \rightarrow H_2O_2$$

Peroxide production	Current densities/ Potential or Voltage applied	Power input	
1.3 g H ₂ O ₂ L ⁻¹	5.3 A m ⁻² at 0.5V	0.93 Wh g ⁻¹ H ₂ O ₂	Rozendal, <i>et al.,</i> 2009
1.4 g H ₂ O ₂ L ⁻¹	7.7 A m ⁻² at 1 V	2.6 Wh g ⁻¹ H ₂ O ₂	Simm <i>et al.,</i> 2015
9.7 g H ₂ O ₂ L ⁻¹	1.7 A m ⁻² at 11.8V	2.9 Wh g ⁻¹ H ₂ O ₂	Modin and Fukushi 2013
3.1 g H ₂ O ₂ L ⁻¹	10.1 A m ⁻² at 0.31V	<0.4 Wh g ⁻¹ H ₂ O ₂	Torres, <i>et al.</i> , 2018

- Appropriate for disinfection and micro pollutant removal (5-20 mg $H_2O_2\ L^{-1}$) when coupled with UV and Fenton processes.
- Energy input for H₂O₂ significant less than the 10 Wh g⁻¹ H₂O₂ by anthraquinone oxidation and 4-5 Wh g⁻¹ H₂O₂ by electrochemical technologies.

Closed-loop decentralized systems

3. Research outcomes

Bioelectrochemical system performance exposed to > 1 g H_2O_2 L^{-1} during long-term

 H_2O_2 can be <u>concentrated in a middle compartment</u> for post-disinfection purposes.

<u>Challenge: could interfere with the desirable microbial</u> <u>community in the bioanode</u>, affecting the performance during long-term.

✓ Current densities of duplicates exposed to 1 g H₂O₂ L⁻¹ (load 0.5 g/day, 6day of HRT) in the middle compartment were not affected during 28 days.

Conclusions and insights

- 1 g H₂O₂ L⁻¹ concentrated in a middle compartment do not alter bioanodes performance during a 28 days test.
- Higher concentrations of 5 g H₂O₂ L⁻¹ showed a decrease in current densities after 15 days, and 30 g H₂O₂ L⁻¹ provoke a drop in current production to zero within hours.
- A trade-off: organic load/ peroxide production/ up-concentration in a middle compartment should be analysed in more realistic scenarios for water disinfection.
- Preliminary results demonstrate the limits and feasibility for applying this idea in decentralized systems in areas of water stress.

MSc. Suanny Mosquera Romero Suannysophia.mosqueraromero@UGent.be, suasomos@espol.edu.ec

Acknowledgement

Dr. Korneel Rabaey – Center for Microbial Ecology and Technology (CMET)

Dr. Diederik Rousseau – Laboratory for industrial water and Ecotechnology (LIWET)

Dr. Luis Dominguez – Centro de agua y desarrollo sustentable (CADS)

Dr. Jan Arends – Center for Microbial Ecology and Technology (CMET)

Questions?

